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Abstract

Experimental studies of the impact of climatic change are hampered by their inability to consider multiple climate

change scenarios and indeed often consider no more than simple climate sensitivity such as a uniform increase in tem-

perature. Modelling efforts offer the ability to consider a much wider range of realistic climate projections and are

therefore useful, in particular, for estimating the sensitivity of impact predictions to differences in geographical

location, and choice of climate change scenario and climate model projections. In this study, we used well-established

degree-day models to predict the voltinism of 13 agronomically important pests in California, USA. We ran these

models using the projections from three Atmosphere–Ocean Coupled Global Circulation Models (AOCGCMs or

GCMs), in conjunction with the SRES scenarios. We ran these for two locations representing northern and southern

California. We did this for both the 2050s and 2090s. We used ANOVA to partition the variation in the resulting

voltinism among time period, climate change scenario, GCM and geographical location. For these 13 pest species, the

choice of climate model explained an average of 42% of the total variation in voltinism, far more than did geographi-

cal location (33%), time period (17%) or scenario (1%). The remaining 7% of the variation was explained by various

interactions, of which the location by GCM interaction was the strongest (5%). Regardless of these sources of

uncertainty, a robust conclusion from our work is that all 13 pest species are likely to experience increases in the

number of generations that they complete each year. Such increased voltinism is likely to have significant

consequences for crop protection and production.
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Introduction

How climatic change will affect agricultural systems is

clearly a question of concern (Olfert et al., 2011),

directly applicable to important global issues such as

food security (Gregory et al., 2009). An understanding

of the potential impacts of climatic change on

agricultural pests is necessary if we want to be able to

predict the response of agricultural systems to that

change. Temperature changes can directly affect insect

development, survival, range, population density and

voltinism (Bale et al., 2002). Yet, studies investigating

the response of agricultural pests to climate change are

relatively uncommon (Mika et al., 2008). If progress is

to be made in developing strategies to adapt agricul-

tural systems to the impacts of climatic change, such

studies are critically important. This is particularly true

in areas such as California, a state that is economically

dependent on its agricultural industry, and encom-

passes several climatic zones (Hayhoe et al., 2004).

Model-based studies are a valuable method for

predicting the impacts of climatic change on insect

pests (Jönsson et al., 2009; Olfert et al., 2011). While

there are various ways to represent the climatic changes

in modelling studies, more sophisticated treatments

use climate projections derived from global circulation

models (GCMs, Mika et al., 2008). Numerous research-

ers have relied on this approach to predict biological

impacts. For example, GCM-derived projections have

been utilized to predict: the future distribution and

abundance of crop pests (Olfert et al., 2011), butterfly

extinction rates (Beaumont & Hughes, 2002) and

voltinism of forestry pests (Jönsson et al., 2009).

Projections from GCMs have also been used to estimate

the impacts of climatic change on water resources

(Buytaert et al., 2009), to evaluate conservation policies

(Harrison et al., 2006) and to assess the risk of invasive

species (Mika & Newman, 2010; Mika et al., 2008).

For model-based impact studies such as these, it is

important that sources of uncertainty are identified
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and that we emphasize those results that are robust to

these sources of uncertainty. In climate projections,

there are three main sources of uncertainty: (i) the

internal variability in the climate system, which arises

from fluctuations not caused by radiative forcing;

(ii) model uncertainty, which is a consequence of

the different assumptions and simplifications used in

different climate models; and (iii) scenario

uncertainty, resulting from uncertainty about future

greenhouse gas emissions. Hawkins & Sutton (2009)

showed that for predictions of surface temperature,

the contribution of model uncertainty to total uncer-

tainty in projections is relatively constant across all

timescales. Scenario uncertainty is more important

than model uncertainty for projections >50 years in

the future, and less important than model uncertainty

for more proximate projections. Internal variability is

more important than either model or scenario uncer-

tainty for projections <20 years in the future, but for

longer time horizons, internal variability is relatively

unimportant. As much of the modelling work on the

biological impacts of climatic change considers peri-

ods from 60 to 100 years in the future, researchers

using GCM-derived climate projections need to

mainly worry about uncertainties (ii) and (iii). That is,

we must decide which climate model(s) and which

scenario(s) to use. Researchers sometimes confound

these two sources of uncertainty by comparing differ-

ent model-scenario combinations without holding

either the scenario, or the model, constant (e.g. Carroll

et al., 2010). The importance of scenario choice in

impact studies has been discussed extensively by

others (Beaumont et al., 2007); indeed, this is often

considered to be the most significant source of uncer-

tainty in the use of climate model outputs (Quiggin,

2008).

The potential of different climate models to influence

predictions has received less attention than has the

issue of scenario choice. As of the fourth assessment

report of the Inter-governmental Panel on Climate

Change (Randall et al., 2007), there were 23 different

atmosphere–ocean coupled GCMs, developed by 18

climate modelling centres globally. Each model has

both strengths and weaknesses, with no single model

considered ‘best’ overall at projecting the climate

(Bader et al., 2008; Meehl et al., 2007). Although all

models project an increase in global mean surface air

temperatures over the next century (Meehl et al., 2007),

this general consensus can be coarse from an ecological

perspective. Variation between different climate models

can certainly influence biological results, and predicting

biological impacts based on projections from only one

GCM may be misleading (Beaumont et al., 2008;

Newman, 2006). As there is no ‘best’ model, researchers

need to consider a number of models to reach robust

conclusions, or at least to characterize the model depen-

dence of their predictions (Parker, 2006).

The use of multiple GCMs in impact studies is only

recently becoming common practice (Buisson et al.,

2010), likely a consequence of the increasing number of

studies that are noting discrepancies in predicted

impacts as a result of model choice. For example, Olfert

et al. (2011) noted varying responses to model inputs

for the three GCMs used in their study of the crop pest

Melanoplus sanguinipes, and in a study by Kriticos et al.

(2009), the variability in results caused by different

GCMs was as great as the variability caused by differ-

ent scenarios. Mika et al. (2008) found that GCM choice

could result in prediction of areas at risk for Contarinia

nasturtii that diverged not just in magnitude but also in

direction of change; see also Mika & Newman (2010).

Results such as these have worrying implications for

impact research and emphasize the need for studies

that investigate model dependency of projected

biological impacts.

Here, we used degree-day models to predict the

number of generations per year (voltinism) of 13 pest

species of economic importance in California, using

temperature projections from each combination of three

GCMs, three scenarios, three time periods and two loca-

tions (hereafter, referred to as ‘sources of uncertainty’).

We expected that different emissions scenarios would

produce different predictions of impacts, particularly

for the later time period. Similarly, we expected large

differences in the predictions for different geographical

locations, particularly later in the century. We did not

think that model choice would be as important as these

other sources of uncertainty. Degree-days are a mea-

sure of physiological time, or the amount of heat

needed for an organism to develop. Degree-day models

are commonly used in integrative pest management, as

they yield a significant amount of information on insect

development. As these models draw on daily minimum

and maximum temperatures as inputs, they lend

themselves particularly well to studies concerned with

predicting the impacts of climatic change.

Material and methods

Pest degree-day models

We used degree-day models for 13 different agricultural pest

species of economic importance in California (Table 1). We

used the models recommended by the University of Califor-

nia’s Cooperative Extension’s Integrated Pest Management

Program (UCIPM; http://ucipm.ucdavis.edu/). For all pests

except the beet armyworm, we used the single sine and the

horizontal cut-off setting. For the beet armyworm, we used
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the double sine and horizontal cut-off setting. In each case,

these were the default settings recommended by the UCIPM.

These are working models with at least enough predictive

power to be considered useful for actual management applica-

tions. There is considerable scope for tuning these models to

account for specific genotypes, locations, microclimates, pho-

toperiods, host plants and host-plant parts (see Scriber, 2010;

and references therein). For the purposes of this study, we

ignore these biological details. Uncertainty in the choice of

biological model can be nontrivial (Thuiller, 2004), and it

would be interesting to know how the magnitude of this

source of uncertainty scales with those sources we consider in

this article. Nevertheless, such quantification was beyond the

scope of this study.

Degree-day models sometimes specify a calendar date after

which time degree-days start accumulating, and/or a date after

which degree-days stop accumulating. The UCIPM specified

start dates for only three species and did not specify end dates

for any of the 13 species. One impact of climatic change for any

given location may be that the growing season (i.e. the presence

of the host plants) starts earlier and/or ends later (see Appen-

dix A, Supplemental Information). Without allowing flexibility

for the start and end of degree-day accumulation, such impacts

would be missed in a modelling exercise like this one. We there-

fore ran all the degree-day models on a calendar year basis. For

the three with specified start dates, the results of the two

approaches differed by <10% (results not shown).

Climate change projections

Projections were downloaded from the Program for Climate

Model Diagnosis and Intercomparison Working Group on

Coupled Models CMIP3 multi-model data set (http://esg.llnl.

gov:8080/index.jsp) as daily minimum and maximum temper-

ature values for two locations, hereafter referred to as ‘north-

ern’ and ‘southern’ (Fig. 1), for each of the A1B, A2 and B1

scenarios from the Special Report on Emissions Scenarios

(Nakicenovic et al., 2000) for three GCMs. The three GCMs we

used were the Canadian Centre for Climate Modelling and

Analysis model CGC M3.1; the Australian Commonwealth

Scientific and Industrial Research Organization model CSIRO

Mk3.5 and the US National Oceanic and Atmospheric Admin-

istration’s Geophysical Fluid Dynamics Laboratory model

GFDL CM2.1. All projections were obtained for a 30 year base-

line period (1961–1990), the 2050s (2046–2065) and the 2090s

(2081–2100). Historical data for the baseline period were also

obtained for the northern and southern California locations to

provide a reference.

The A2, A1B and B1 scenarios are sometimes referred to as

‘high’, ‘medium’ and ‘low’ emissions scenarios, respectively

Table 1 Phenology and host crop data for the 13 agricultural pest species investigated

Organism

Generation

parameters

Generation time

DD (°F)/LDT/UDT (°F) Agricultural host

Beet Armyworm

(Spodoptera exigua)

Egg to Adult 882/54/NA

(Hogg & Gutierrez, 1980)

Cotton

(Gossypium hirsutum)

California Red Scale

(Aonidiella aurantii)

Crawler to Crawler 1199/53/NA

(Bimboni, 1970)

Grapefruit

(Citrus 9 paradisi)

Codling Moth

(Cydia pomonella)

Egg to Egg 1118/50/88

(Ohlendorf, 1999)

Apple/Pear

(Malus domestica / Pyrus communis)

Elm Leaf Beetle

(Pyrrhalta (Xanthogaleruca) luteola)

Egg to Egg 1206/52/NA

(Dahlsten et al., 1993)

English Elms

(Ulmus procera)

Lygus Bug

(Lygus hesperus)

Egg to Egg 799/54/NA

(Pickel et al., 1990)

Strawberries

(Fragaria sp.)

Navel Orangeworm

(Amyelois transitella)

Adult to Adult 1092/55/94

(Sanderson et al., 1989)

Mummy Almonds

(Prunus dulcis)

Omnivorous Leafroller

(Platynota stultana)

Egg to Adult 1168.2/48/87

(Kido et al., 1981)

Grapes

(Vitis vinifera)

Orange Tortrix

(Argyrotaenia citrana)

Adult to Adult 1636/43/78

(Bettiga et al., 1992)

Grapes

(Vitis vinifera)

Oriental Fruit Moth

(Grapholita molesta)

Egg to Egg 963/45/90

(Croft et al., 1980)

Peaches

(Prunus persica)

Peach Twig Borer

(Anarsia lineatella)

Adult to Adult 1060/50/88

(Rice et al., 1982a)

Almonds

(Prunus dulcis)

Pink Bollworm

(Pectinophora gossypiella)

Adult to Adult 885/57/91

(Beasley & Adams, 1996)

Cotton

(Gossypium hirsutum)

San Jose Scale

(Quadraspidiotus perniciosus)

n/a 1050/51/90

(Rice et al., 1982b)

Stonefruits/Almond

(Prunus sp.)/(Prunus dulcis)

Tomato Fruitworm

(Helicoverpa (Heliothis) zea)

Adult to Adult 872.8/55/92

(Hartstack et al., 1976)

Cotton

(Gossypium hirsutum)

LDT = lower developmental threshold, UDT = upper developmental threshold. Note, several species do not have an UDT.
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(Meehl et al., 2007). The A2 scenario depicts a future with slow

economic growth and technological advancement, and high

human population growth. The A1B scenario depicts a future

of rapid economic growth and introduction of new and effi-

cient technology – reliant on a balance of fossil and nonfossil

energy sources – with moderate human population growth.

The B1 scenario depicts a future with the same trend of mod-

erate population growth as A1B, but with greater emphasis on

environmental sustainability (Nakicenovic et al., 2000).

Despite their large spatial scale, GCM projections are pref-

erable to Regional Climate Model (RCM) output, or to statisti-

cally downscaled projections for the following reasons. First, it

is rarely the case that there are multiple RCMs covering the

same geographical area, so it would be difficult to assess the

uncertainty due to climate model choice if we used RCM out-

put. Second, despite their smaller spatial scale, RCMs are not

necessarily more accurate than GCMs and can actually be less

accurate (see Bader et al., 2008, page 32 for further discussion).

Like RCM results, statistically downscaled results are rarely

readily available from multiple GCMs for the same locations,

scenarios and time slices. So again, it would be difficult to con-

duct an assessment of model dependence. Also, like RCMs,

the principle advantage to using downscaled results is for the

use of precipitation projections, less so for temperature

projections. As degree-day models only use daily minimum

and maximum temperatures, there are fewer advantages of

using a downscaled approach.

Predicted impact of climatic change and variance
partitioning

Projected dailyminimumandmaximum temperatures for each of

the GCM–scenario–location–time combinations (hereafter

referred to simply as ‘projected futures’) were averaged over each

time period, such that for each time period there was only one

minimum and maximum temperature for each day of a standard

calendar year (Luedeling et al., 2011 used the same logic in their

recent, related work). We then ran degree-day models for each

pest using temperatures from each projected future. For each case,

the predicted number of generations per year was calculated by

dividing the total number of accumulated degree-days generated

by the degree-daymodel, by the number of degree-days required

for the pest in question to complete one generation (Table 1).

We used analysis of variance as a tool to partition the variation

in the predicted number of generations per year for each pest.

We divided the sums of squares of each term by the total sum of

squares to determine the percentage of the variation explained

by each of the sources of uncertainty: model, scenario, time

period, location and their interactions. Note that we are not

using ANOVA to make statistical inferences; these models are

deterministic and hence such inferences are not required.

Results

Climate change projections

Comparison of theminimumandmaximumdaily temper-

atures projected by each GCM–scenario–time–location
combination revealed that the temperatures projected by

each of the three GCMs were noticeably different,

irrespective of the other factors. The GFDL model

tended to projected cooler daily minimum and

maximum temperatures, whereas the CSIRO model

tended to project warmer minimum daily temperatures,

particularly for the southern location (Fig. 2).

Partitioned variation

The results of the variance partitioning analysis

followed the same trend across the entire range of pests

investigated, in the order (from the source of uncer-

tainty that explained the most variance in the results to

the least) of climate model >location >time >location by

climate model interaction >scenario. These sources

explained on average 42%, 33%, 17%, 5% and 1% of the

variation in the predicted number of generations per

year of the 13 insect pests, respectively, with the

remaining interaction terms explaining a combined

1.5% (Table 2). These percentages were similar across

the 13 pest species (Fig. 3), although some discrepancies

between organisms did exist (Fig. 4).

California, USA

Tehama

Butte

Colusa

Los Angeles

Kern

Ventura
Southern location

Northern location
Glen

0 200 Km

Fig. 1 Locations of the ‘northern’ and ‘southern’ locations.

These locations represent approximately 4500 km2. We

extracted the daily minimum and daily maximum temperatures

for each location from the relevant grid cell from each model.

Northern location: CGC M3.1 = 38.97,�123.75; CSIRO Mk3.5 =

40.1,�121.88; GFDL CM2.1 = 39, �121.25. Southern location:

CGC M3.1 = 35.26, �120; CSIRO Mk3.5 = 34.51,-118.12; GFDL

CM2.1 = 35, �118.75. Note, the three models operate on differ-

ent spatial scales; therefore the location of the centre of the grid

cell that contains each location will differ between the models,

but for each model, the locations are present in one, and only

one, grid cell (i.e. our locations do not span grid cells in any of

the three climate models).
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Predicted response to climatic change

Although the predicted number of degree-days

accumulated per year increased for all species and was

greater in the south than the north, and greater in the

later time period, these increases do not necessarily

result in complete additional generations. Figure 4

shows the number of generations above those

produced during the baseline period (averaged across

all the scenarios as these produced little variation in the

degree of voltinism). We can see that for the 2050s in

the northern location, none of the species increase by a

complete generation under all of the three GCM

projections. In the southern location, the only robust (to

the choice of climate model) predictions of an extra

generation were for the beet army-worm, the lygus bug

and the oriental fruit moth. As we move further

towards the end of the century, where warming

becomes more significant, we see stronger indications

of an additional generation. In the northern location,

those indications are still mixed. The same three species

that robustly increased by a complete generation in the

south in the 2050s do so in the north by the 2090s.

Seven other species are predicted to increase by a

complete generation under projections from two of the

climate models, but not under all three (i.e. that

prediction is model dependent). In the south, however,

the results are considerably more clear-cut. With the

exception of the orange tortrix, the remaining 12 species

all increase by at least a full generation per year under

all three models, and the elm leaf beetle is closing in on

two additional generations per year (see Fig. 4).

Predictions based on the CGC M3.1 resulted in the

smallest increases about 75% of the time, whereas

predictions based on the CSIRO Mk3.5 resulted in the

largest increases about 75% of the time although,
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Fig. 2 Comparison of the minimum and maximum daily temperature projections across GCMs. The circle symbols represent projec-

tions from the Canadian climate model (CGCM3.1); the square symbols represent projections from the Australian climate model

(CSIRO Mk3.5); and the diamond symbols denote projections from the US climate model (GFDL CM2.1). DJF = December, January,
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Table 2 Descriptive statistics of the variation in predicted

voltinism explained by various sources of uncertainty, across

13 agricultural pest species in California, USA. ‘Location:

Model’ refers to the interaction of geographical location and

the climate model source used for the climate data

Variance in voltinism (%)

Mean Minimum Maximum Range

Model 42.19 37.21 53.16 15.95

Location 33.20 27.70 36.10 8.40

Time 17.15 12.83 20.46 7.63

Location:Model 4.93 4.10 7.53 3.43

Scenario 1.03 0.61 1.31 0.70

Other 1.51 0.81 2.70 1.89
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clearly, the pattern was not universal. It would be diffi-

cult to intuit these results from an examination of

Fig. 2, which shows how mean values can sometimes

be misleading.

The predictions derived from the projected baseline

temperature data differed considerably from those

derived from historical temperature data (Fig. 5). For

northern California, predictions based on historical

data were higher than for all three climate models,

although particularly so for the GFDL CM2.1 model.

For southern California, predictions were again higher

when based on historical data than for the GFDL

CM2.1 model, but were lower for the CSIRO Mk3.5

model. Predictions for the CGC M3.1 model in the

southern location were the most similar between

historical and projected temperature data, with only

minor discrepancies. We present these differences for

information only. While it would be possible to apply a

‘correction’ to the baseline results, to minimize this

difference, we feel such an approach is ill-advised. The

important comparison in this work is the difference

between the predictions that result from using the

baseline and future climate projections (e.g. Fig. 4).

Baseline projections are generated using the same

GCMs as the future projections, and therefore, any

uncertainty due to differences between model

projections and actual climate are not confounded with

the assessment of climatic change per se (as they are for

example in Luedeling et al., 2011). While applying a

‘correction’ to the baseline is mechanically possible,

that same correction should not be applied to the future

predictions, as there is no reason to believe that the bias

between model projections and future climate will be of

the same size or direction as the differences between

the baseline and the historical climate. As this is the

case, there is nothing to be gained by ‘correcting’ the

bias in the baseline results. It is sufficient to simply

note these differences for additional perspective in

considering the implications of predicted results.
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Fig. 4 This figure depicts the predicted increase in the number of generations, calculated as the predicted number of generations in the

future minus the number of generations predicted under the baseline condition for the northern and southern locations.

Beet Armyworm

Lygus Bug

California Red Scale

Navel Orangeworm

Elm Leaf Beetle

Pink Bollworm

Tomato Fruitworm

San Jose Scale

Peach Twig Borer

Codling Moth

Omniverous Leafroller

Oriental Fruit Moth

Orange Tortrix

0 20 40 60
% Variation in voltinism explained

80 100

Model Location Time Scenario Loc:Model Other

Fig. 3 The relative magnitude of various sources of uncertainty

in the predicted voltinism of 13 economically important agricul-

tural pests of California. Each bar represents the total variance

in results for a specific pest, partitioned into variance explained

by model, location, time, scenario, location model interaction

and other, where other represents all remaining interactions.
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Discussion

Conclusions about California pests

Luedeling et al. (2011) recently conducted an

assessment of four California pest species, including

two considered in our work, using similar degree-day

models. There are a number of significant differences

between Luedeling et al.’s work and ours. Luedeling

et al. consider predictions for the whole of California,

although the focus is on the Central Valley area. A

notable difference is that although Luedeling et al. used

projections from three GCMs (CSIROMK3.0, HadCM3

and MIROC3.2), they averaged over the results from

each GCM before analysing them, thus avoiding an

analysis of the impact of climate model choice (but see

their Fig. 3). Rather than use the baseline output for

each climate model as the ‘control condition’,

Luedeling et al. used a specially generated comparison

dataset based on historical climate data. Despite these

differences, Luedeling et al.’s qualitative conclusions

for the four species they considered are similar to the

13 we consider in the present work. They predicted

increased generations, but because of the differences in

approaches to baseline conditions and Luedeling et al.’s

use of downscaling and averaging of GCM-specific

results, plus the differences in GCM choice, we are not

able to make more quantitative comparisons between

the two studies.

In this study, the number of degree-days per year is

predicted to increase over the next century for all 13

pest species investigated, regardless of the climate

projection utilized to generate the predictions. As we

pointed out earlier, whether the increased accumula-

tion of degree-days results in an additional generation

is less clear. The occurrence of additional complete

generations is only a robust conclusion for the southern

location at the end of the century. Much will probably

depend on how agricultural practices change in

response to the changing climate.

Model choice explained between 37% and 54% of the

variance in predictions of voltinism across the 13 pest spe-

cies. This is greater than the variance explained by choice

of location or time period, and substantially greater than

scenario, which explained on average a mere 1% of the

variance in results. The discrepancy between the variance

explained by GCM choice and by emissions scenario

choice is particularly surprising, as different scenarios are

expected to yield different predictions of biological

impacts by virtue of their nature (Table 2).

Climate scenarios are not predictions or forecasts;

rather, they are plausible ideas of what the future might

look like. The four families of climate scenarios are

based on plausible changes in demography, socio-

economic development and technological development;

changes that are poorly understood and very difficult

to predict (Nakicenovic et al., 2000). Due to this consid-

erable uncertainty surrounding future greenhouse gas

emissions, the inclusion of multiple scenarios is often

prioritized over the inclusion of multiple models in

impact studies. This study shows that, at least in certain

systems, the inclusion of multiple models can be more

important than the inclusion of multiple scenarios in

terms of gaining a more complete understanding of the

possible impacts of climatic change. We certainly

would not suggest an abandonment of the multiple

scenario approach; the logic behind the inclusion of

multiple scenarios is well supported (Nakicenovic et al.,

2000). What we would advocate, based on these results,

is to always include multiple GCM-scenario combina-

tions (see e.g. Kriticos et al., 2009; Mika & Newman,

2010; Mika et al., 2008; Newman, 2006; Thuiller, 2004)
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Fig. 5 Comparison of predictions based on historical climate

data to those based on the baseline time period for each climate

model. GCM-based climate projections for the baseline period

uniformly underestimate voltinism for the northern location

and perform differently for the southern location.
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to ensure that both sources of uncertainty – model and

scenario – are accounted for.

Although addressed less often than scenario uncer-

tainty, there is also uncertainty associated with GCMs.

As previously mentioned, there are currently 23 GCMs

used by the IPCC (Randall et al., 2007). These models

vary in the number and type of processes and feedback

mechanisms that are incorporated, whether processes

are represented mechanistically or phenomenologically,

in their spatial and temporal resolution, etcetera

(Randall et al., 2007). Thus, each model represents a

different abstraction of the climate system. Although

certain models perform better for specific measures of

fit, no single model consistently performs at the top;

none of these models are considered to be any “better”

than any other (Bader et al., 2008). Accordingly,

researchers engaging in biological impact studies are

encouraged to use several models (Mika et al., 2008;

Nakicenovic et al., 2000; Newman, 2006), a recommen-

dation that is again supported by the results of this

study.

Location also had a substantial effect on the impact

of climatic change on the pest species, explaining 33%

of the variation in the response. A location effect in and

of itself is not surprising; warmer temperatures in the

south would be expected to contribute to a higher num-

ber of generations per year. Indeed, the further apart

(along the latitudinal gradient) the two locations are

located, the more variation we would expect ‘location’

to account for. More interesting, however, was the

presence of a substantial location by model interaction,

suggesting that the influence of model choice on pest

response may be at least partially location specific.

Referring back to the projected minimum temperatures

(Fig. 2), there is a greater discrepancy between the

northern and southern temperatures for the CSIRO

Mk3.5 model than for either of the GFDL CM2.1 or

CGC M3.1 models. This inconsistency likely accounts

for the substantial interaction between location and

model.

It would be premature to make a sweeping conclu-

sion declaring model choice to be the primary factor in

determining the impacts of climatic change on agricul-

tural pests in California, as we have only investigated

three of 23 possible GCMs here. Indeed, it is possible

that one, or even two, of the models used here are

anomalies, and that the remaining 20 GCMs would

yield similar predictions of voltinism, although we

doubt that this is the case. What these results do

emphasize is that when studies use only a single GCM,

their conclusions should be interpreted with caution, as

they may be heavily ‘model dependent’. Decisions

formed on the basis of predictions made by impact

studies – in the form of policies, mitigation strategies,

etc. – may play a significant role in shaping the future.

Thus, overconfident predictions of the impact of

climatic change have the potential to be “expensive fail-

ures” (Knutti, 2010). If biologists are to wisely inform

policy makers regarding the impacts of climatic change,

it is imperative that uncertainty in model projections be

quantified and reported in biological impact studies.

Model criticism

It could be argued that this modelling approach overly

simplifies the problem of predicting the response of

agronomic pest species to climatic change. The point of

a model is not to reproduce nature in mathematics, the

point is to simplify nature, to abstract it to capture a

few essential features. The justification for this abstrac-

tion lies in the incomprehensible complexity of even

these reasonably simple agricultural systems (com-

pared with more natural and extensive ecosystems).

Note that this is equally true of reductionist experimen-

tal approaches, and so it is not limited to models per se.

“The fact that a model does not and cannot consider

every detail of the system it represents is irrelevant,

what matters is whether this vast simplification con-

tains the essential mechanisms that are known or

thought to drive the system dynamics. We cannot

always know, a priori, whether this is the best simplifi-

cation, just as we cannot know whether we have

included all possible interactions in an experiment.”

(Hoover & Newman, 2004). Degree-day models have a

long history and a proven track record in pest manage-

ment, which we feel is sufficient evidence that they

capture some important aspects of the biology of insect

pests, and are therefore a useful abstraction. Neverthe-

less, it is worth reminding ourselves of what the models

cannot do. In this section, we briefly consider the

limitations of this and other modelling approaches to

provide some perspective on our results, and to see

how this approach compares to others we could have

used.

In our view, the most significant limitations of this

approach for studying herbivorous arthropods are (1)

dependence solely on temperature means that the mod-

els are not well suited for considering interactions

between changing temperature, precipitation and rising

CO2 concentrations (Robinson et al., 2012); (2) these

models cannot capture the feedback from the changing

host-plant quality that will certainly occur under these

conditions (Robinson et al., 2012); and (3) they assume

that the current upper and lower developmental

thresholds for each species will remain constant

through time (i.e. that there will be no local adaptation

to the changing climate; see Newman et al., 2011 for

further discussion). These problems are not entirely
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unique to degree-day models; bioclimatic envelope

models and ecological niche models both suffer from

problems (2) and (3), and although they are capable of

incorporating aspects of climate beyond daily mini-

mum and maximum temperatures, they are still ill-sui-

ted to dealing with interacting effects, particularly

under changing climatic conditions. Physiologically

based mechanistic models suffer from (3) but are lar-

gely able to overcome problems (1) and (2) and should

be the preferred approach except that they are vastly

more difficult to develop and implement, and while

they may be more useful for investigating interactions

and feedback mechanisms, they are not necessarily bet-

ter at forecasting insect population dynamics

(Newman, 2004, 2005, 2006, Newman et al., 2003). The

simplicity of degree-day, bioclimatic envelope and eco-

logical niche models gives them a certain heuristic

value, allowing us to focus on a single problem at a

time (Mika & Newman, 2010; Mika et al., 2008). Despite

the drawbacks inherent in such extreme reductionist

approaches, there is still a role for such models in our

overall approach to predicting the biological impacts of

climatic change.
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